bootstraphtml5模板(bootstrap模板免費(fèi)下載)
來源 | 數(shù)量經(jīng)濟(jì)學(xué)綜合整理
轉(zhuǎn)載請聯(lián)系
進(jìn)行回歸分析,一般需要研究系數(shù)的估計值是否穩(wěn)定。很多經(jīng)濟(jì)變量都存在結(jié)構(gòu)突變問題,使用普通回歸的做法就是確定結(jié)構(gòu)突變點,進(jìn)行分段回歸。這就像我們高中學(xué)習(xí)的分段函數(shù)。但是對于大樣本、面板數(shù)據(jù)如何尋找結(jié)構(gòu)突變點。所以本文在此講解面板門限回歸的問題,門限回歸也適用于時間序列(文章后面將介紹stata15.0新命令進(jìn)行時間序列的門限回歸)。
門限效應(yīng),是指當(dāng)一個經(jīng)濟(jì)參數(shù)達(dá)到特定的數(shù)值后,引起另外一個經(jīng)濟(jì)參數(shù)發(fā)生突然轉(zhuǎn)向其它發(fā)展形式的現(xiàn)象(結(jié)構(gòu)突變)。作為原因現(xiàn)象的臨界值稱為門限值。例如,成果和時間存在非線性關(guān)系,但是在每個階段是線性關(guān)系。有些人將這樣的模型稱為門檻模型,或者門限模型。如果模型的研究對象包含多個個體多個年度,那么就是門限面板模型。
一、historyHansen
常見模型如下:門檻回歸模型(threshold regression,也稱門限回歸):
漢森(Bruce E. Hansen)在門限回歸模型上做出了很多貢獻(xiàn)。Hansen于1996年在《Econometrica》上發(fā)表文章《Inference when a nuisance parameter is not identified under the null hypothesis》,提出了時間序列門限自回歸模型(TAR)的估計和檢驗。之后,他在門限模型上連續(xù)追蹤,發(fā)表了幾篇經(jīng)典文章,尤其是1999年的《Threshold effects in non-dynamic panels: Estimation, testing and inference》(Hansen (1999) 首次介紹了具有個體效應(yīng)的面板門限模型的計量分析方法, 該方法以殘差平方和最小化為條件確定門限值, 并檢驗門限值的顯著性, 克服了主觀設(shè)定結(jié)構(gòu)突變點的偏誤。具體思路是:選定某一變量作為門限變量, 根據(jù)搜尋到的門限值將回歸模型區(qū)分為多個區(qū)間, 每個區(qū)間的回歸方程表達(dá)不同, 根據(jù)門限劃分的區(qū)間將其他樣本值進(jìn)行歸類, 回歸后比較不同區(qū)間系數(shù)的變化。),2000年的《Sample splitting and threshold estimation》和2004年與他人合作的《Instrumental Variable Estimation of a Threshold Model》。
在這些文章中,Hansen介紹了包含個體固定效應(yīng)的靜態(tài)平衡面板數(shù)據(jù)門限回歸模型,闡述了計量分析方法。方法方面,首先要通過減去時間均值方程,消除個體固定效應(yīng),然后再利用OLS(最小二乘法)進(jìn)行系數(shù)估計。如果樣本數(shù)量有限,那么可以使用自舉法(Bootstrap)重復(fù)抽取樣本,提高門限效應(yīng)的顯著性檢驗效率。在Hansen(1999)的模型中,解釋變量中不能包含內(nèi)生解釋變量,無法擴(kuò)展應(yīng)用領(lǐng)域。Caner和Hansen在2004年解決了這個問題。他們研究了帶有內(nèi)生變量和一個外生門限變量的面板門限模型。與靜態(tài)面板數(shù)據(jù)門限回歸模型有所不同,在含有內(nèi)生解釋變量的面板數(shù)據(jù)門限回歸模型中,需要利用簡化型對內(nèi)生變量進(jìn)行一定的處理,然后用2SLS(兩階段最小二乘法)或者GMM(廣義矩估計)對參數(shù)進(jìn)行估計。
二.顯著性檢驗
門檻回歸模型顯著性檢驗的目的是,檢驗以門檻值劃分的兩組樣本其模型估計參數(shù)是否顯著不同。
展開全文
因此,不存在門檻值的零假設(shè)為:Ho:兩個系數(shù)相同。同時構(gòu)造LM統(tǒng)計量:
其中,So是在零假設(shè)下的殘差平方和。由于LM統(tǒng)計量并不服從標(biāo)準(zhǔn)的分布。因此, Hansen(2000)提出了通過“自舉法”( Bootstrap)來獲得漸進(jìn)分布的想法,進(jìn)而得出相應(yīng)的概率p值,也稱為 Bootstrap P值。
這種方法的基本思想是:在解釋變量和門檻值給定的前提下,模擬( Simulate)產(chǎn)生一組因變量序列,并使其滿足N(0,e2),其中e是式(4)的殘差項。每得到一個自抽樣樣本,就可以計算出一個模擬的エM統(tǒng)計量。將這一過程重復(fù)1000次。Hansen(1996)認(rèn)為模擬產(chǎn)生的LM統(tǒng)計量大于式(6)的次數(shù)占總模擬次數(shù)的百分比就是“自舉法”估計得到的P值。這里的Bootstrap P值類似于普通計量方法得出的相伴概率P值。例如,當(dāng) Bootstrap P值小于0.01時,表示在1 %的顯著性水平下通過了LM檢驗,以此類推。
三.置信區(qū)間
以上的檢驗過程為只有一個門檻值的檢驗過程,為了能確定是否存在兩個門檻值或者是更多的門檻值,我們應(yīng)當(dāng)檢驗是否存在兩個門檻值,拒絕意味著至少存在一個門檻值。我們可以假設(shè)己經(jīng)估計的第一個門檻值,然后開始尋找第二個門檻值。在確定有兩個門檻值后,再尋找第三個門檻值,方法都和前面的一樣,直至我們不能拒絕零假設(shè)。
四、門檻回歸:xthreg
xthreg需要stata13及以上版本
語法格式為:
xthreg depvar [indepvars] [ if] [ in], rx(varlist) qx(varname) [thnum( #) grid(#) trim(numlist) bs(numlist) thlevel(#) gen(newvarname) noreg nobslog thgiven options]
選項含義:
depvar被解釋變量,indepvars 解釋變量,qx(varname) is the threshold variable,門限變量,thnum(#) is the number of thresholds,在stata13.0中門檻值是必要項目,需要等于大于1,小于等于3,默認(rèn)值為1,也就是至少存在三個門檻值。
rx(varlist) is the regime-dependent variable. Time-series operators are allowed. rx is required. 區(qū)制變量或者制度變量
qx(varname) is the threshold variable. Time-series operators are allowed. qx is required. 門限變量或者門檻變量
thnum(#) is the number of thresholds. In the current version (Stata 13), # must be equal to or less than 3. The default is thnum(1). 門檻個數(shù)
grid(#) is the number of grid points. grid is used to avoid consuming too much time when computing large samples. The default is grid(300). 網(wǎng)格點數(shù)
trim(numlist) is the trimming proportion to estimate each threshold. The number of trimming proportions must be equal to the number of thresholds specified in thnum. The default is trim(0.01) for all thresholds. For example, to fit a triple-threshold model, you may set trim(0.01 0.01 0.05).
bs(numlist) is the number of bootstrap replications. If bs is not set, xthreg does not use bootstrap for the threshold-effect test. bootstrap迭代次數(shù)
thlevel(#) specifies the confidence level, as a percentage, for confidence intervals of the threshold. The default is thlevel(95). 置信區(qū)間,默認(rèn)為95%,即thlevel(95)
gen(newvarname) generates a new categorical variable with 0, 1, 2, ... for each regime. The default is gen(_cat).
noreg suppresses the display of the regression result. 不顯示回歸結(jié)果
nobslog suppresses the iteration process of the bootstrap. 不顯示bootstrap迭代過程
thgiven fits the model based on previous results. options are any options available for [XT] xtreg.
Time-series operators are allowed in depvar, indepvars, rx, and qx.
depvar被解釋變量,indepvars 解釋變量,qx(varname) is the threshold variable,門限變量,thnum(#) is the number of thresholds,在stata13.0中門檻值是必要項目,需要等于大于1,小于等于3,默認(rèn)值為1,也就是至少存在三個門檻值。
rx(varlist) is the regime-dependent variable. Time-series operators are allowed. rx is required. 區(qū)制變量或者制度變量
qx(varname) is the threshold variable. Time-series operators are allowed. qx is required. 門限變量或者門檻變量
thnum(#) is the number of thresholds. In the current version (Stata 13), # must be equal to or less than 3. The default is thnum(1). 門檻個數(shù)
grid(#) is the number of grid points. grid is used to avoid consuming too much time when computing large samples. The default is grid(300). 網(wǎng)格點數(shù)
trim(numlist) is the trimming proportion to estimate each threshold. The number of trimming proportions must be equal to the number of thresholds specified in thnum. The default is trim(0.01) for all thresholds. For example, to fit a triple-threshold model, you may set trim(0.01 0.01 0.05).
bs(numlist) is the number of bootstrap replications. If bs is not set, xthreg does not use bootstrap for the threshold-effect test. bootstrap迭代次數(shù)
thlevel(#) specifies the confidence level, as a percentage, for confidence intervals of the threshold. The default is thlevel(95). 置信區(qū)間,默認(rèn)為95%,即thlevel(95)
gen(newvarname) generates a new categorical variable with 0, 1, 2, ... for each regime. The default is gen(_cat).
noreg suppresses the display of the regression result. 不顯示回歸結(jié)果
nobslog suppresses the iteration process of the bootstrap. 不顯示bootstrap迭代過程
thgiven fits the model based on previous results. options are any options available for [XT] xtreg.
Time-series operators are allowed in depvar, indepvars, rx, and qx.
五、門檻回歸的案例
導(dǎo)入數(shù)據(jù)
use hansen1999
1、進(jìn)行單一門檻回歸
xthreg i q1 q2 q3 d1 qd1, rx(c1) qx(d1) thnum(1) trim(0.01) grid(400) bs(300)
輸出結(jié)果包括四個部分。第一部分輸出門限估計值和自舉法的結(jié)果。第二部分列表輸出門限值及置信區(qū)間,Th-1代表單一門限估計值,Th-21 和Th-22代表雙門限回歸的兩個估計值,有時Th-21和Th-1相同。第三部分列出了門限檢驗,包括RSS、MSE、F統(tǒng)計量及概率值,以及10%、5%、1%的置信水平。第四部分是固定效應(yīng)回歸結(jié)果。
2、進(jìn)行單門檻雙向固定效應(yīng)模型
xi : xthreg i q1 q2 q3 d1 qd1 i.year, rx(c1) qx(d1) thnum(1) trim(0.01) grid(400) bs(300)
結(jié)果為:
3、進(jìn)行三重門檻回歸
xthreg i q1 q2 q3 d1 qd1, rx(c1) qx(d1) thnum(3) trim(0.01 0.01 0.05) grid(400) bs(300 300 300)
4、繪圖
輸入命令
Plot the confidence interval using likelihood-ratio (LR) statistics
_matplot e(LR21), columns(1 2) yline(7.35, lpattern(dash)) ///
connect(direct) msize(small) mlabp(0) mlabs(zero) ///
ytitle( "LR Statistics") xtitle( "First Threshold") ///
recast(line) name(LR21) nodraw
_matplot e(LR22), columns(1 2) yline(7.35, lpattern(dash)) ///
connect(direct) msize(small) mlabp(0) mlabs(zero) ///
ytitle( "LR Statistics") xtitle( "Second Threshold") ///
recast(line) name(LR22) nodraw
graph combine LR21 LR22, cols(1)
結(jié)果為:
六、參考文獻(xiàn)及資源下載
計量經(jīng)濟(jì)分析方法與建模:EViews應(yīng)用及實例
Hansen, Bruce E., 2000. "Sample Splitting and Threshold Estimation," Econometrica, 68, 575-603.(門檻回歸Bruce Hansen 在其個人網(wǎng)頁所提供的非官方 Stata 命令 ,下載地址為:http://www.ssc.wisc.edu/~bhansen/progs/progs_threshold.html)
Hansen, B. E. 1999. Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of Econometrics 93: 345-368.
Wang, Qunyong, 2015. "Fixed-effect Panel Threshold Model Using Stata," The Stata Journal, 15(1), 121-134.
資源下載
Bruce E. Hansen "Sample splitting and threshold estimation" Econometrica (2000)中關(guān)于R、Stata、Gauss 、Matlab等軟件的Programs and Data下載地址為:https://www.ssc.wisc.edu/~bhansen/progs/ecnmt_00.html
計量經(jīng)濟(jì)分析方法與建模:EViews應(yīng)用及實例
Hansen, Bruce E., 2000. "Sample Splitting and Threshold Estimation," Econometrica, 68, 575-603.(門檻回歸Bruce Hansen 在其個人網(wǎng)頁所提供的非官方 Stata 命令 ,下載地址為:http://www.ssc.wisc.edu/~bhansen/progs/progs_threshold.html)
Hansen, B. E. 1999. Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of Econometrics 93: 345-368.
Wang, Qunyong, 2015. "Fixed-effect Panel Threshold Model Using Stata," The Stata Journal, 15(1), 121-134.
資源下載
Bruce E. Hansen "Sample splitting and threshold estimation" Econometrica (2000)中關(guān)于R、Stata、Gauss 、Matlab等軟件的Programs and Data下載地址為:https://www.ssc.wisc.edu/~bhansen/progs/ecnmt_00.html
掃描二維碼推送至手機(jī)訪問。
版權(quán)聲明:本文由飛速云SEO網(wǎng)絡(luò)優(yōu)化推廣發(fā)布,如需轉(zhuǎn)載請注明出處。